Roadmap to 2050: The Land-Water-Energy Nexus of Biofuels

Bibliography

A

Achten, W.M.J. , L. Verchot, Y.J. Franken, E. Mathijs, V.P. Singh, R. Aerts, B. Muys, Jatropha bio-diesel production and use, Biomass and Bioenergy 32 (2008) 1063--1084. [https://doi.org/10.1016/j.biombioe.2008.03.003].

Achterbosch, T. J., Meijerink, G. W., Slingerland, M. A., & Smeets, E. M. W. (2013). Combining bioenergy production and food security. NL Agency.

Agrawal, A. (2001). Common property institutions and sustainable governance of resources. World Development, 29(10), 1649--1672.

Agricultural Marketing Resource Center. An Overview of the Biodiesel Market: Production, Imports, Feedstocks and Profitability. [https://www.agmrc.org/renewable-energy/renewable-energy-climate-change-report/] [Renewable-energy-climate-change-report/march-2016-report/an-overview-of-the-biodiesel-market-production-] [imports-feedstocks-and-profitability]. Accessed May 2020.

Agricultural Economic Insights | Pass The Meat: U.S. Meat Consumption Turns Higher". 2021. Agricultural Economic Insights. [https://aei.ag/2016/10/31/u-smeat-consumption-turns-higher/]

Akhtar, Javaid, and Nor Aishah Saidina Amin. 2011. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews 15 (3): 1615--1624. doi: 10.1016/j. rser.2010.11.054.

Alexandratos, N., Bruinsma, J., 2012. World agriculture towards 2030/2050: the 2012 revision (No. 12-- 03), ESA Working Paper. FAO Agricultural Development Economics Division, Rome.

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). FAO Irrigation and Drainage No. 56. Crop Evapotranspiration (guidelines for computing crop water requirements). [https://doi.org/10.1016/j.eja.2010.12.001]

Anderson, J.E., D.M. DiCicco, J.M. Ginder, U. Kramer, T.G. Leone, H.E. Raney-Pablo, T.J. Wallington. 2012. High octane number ethanol--gasoline blends: Quantifying the potential benefits in the United States, Fuel 97:585-594, ISSN 0016-2361, [https://doi.org/10.1016/j.fuel.2012.03.017].

Anseeuw W, Alden Wily L, Cotula L, Taylor M. 2012a. In Land rights and the rush for land: Findings of the global commercial pressures on land research project, Bending T, Wilson D (eds). International Land Coalition: Rome. ISBN 978-92-95093-75-1.; Nolte K, Chamberlain W, Giger M. 2016. International land deals for agriculture. Fresh insights from the Land Matrix: Analytical Report II. [https://doi.org/10.7892/boris.85304].

Araújo, K., Mahajan, D., Kerr, R., & Silva, M. Da. 2017. Global biofuels at the crossroads: An overview of technical, policy, and investment complexities in the sustainability of biofuel development. Agriculture (Switzerland), 7(4). [https://doi.org/10.3390/agriculture7040032]

Atabani, A.E., A.S. Silitonga, I.A. Badruddin, T.M.I. Mahlia, H.H. Masjuki, S. Mekhilef, A comprehensive review on biodiesel as an alternative energy resource and its characteristics, Renewable and Sustainable Energy Reviews 16 (2012) 2070--2093. [https://doi.org/10.1016/j.rser.2012.01.003].

Athar, M., S. Zaidi, A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production, Journal of Environmental Chemical Engineering 8 (2020) 104523. [https://doi.org/10.1016/j.] [jece.2020.104523]

B

Balan, Venkatesh, David Chiaramonti, and Sandeep Kumar. 2013. Review of US and EU initiatives toward development, demonstration, and commercialization of lignocellulosic biofuels. Biofuels, Bioproducts and Biorefining 7 (6): 732--759. doi: 10.1002/bbb.1436.

Balat, M., H. Balat, C. Öz, Progress in bioethanol processing, Progress in Energy and Combustion Science 34 (2008) 551--573. [https://doi.org/10.1016/j.pecs.2007.11.001].

Bardi, U. 2019. Peak oil, 20 years later: Failed prediction or useful insight? Energy Research & Social Science 48:257-261.

Barnett, B.J. 2000. The U.S. farm financial crisis of the 1980s. Agricultural History 74(2):366-380.

Batidzirai, B., Smeets, E.M.W., Faaij, A.P.C., 2012. Harmonising bioenergy resource potentials---Methodological lessons from review of state of the art bioenergy potential assessments. Renewable and Sustainable Energy Reviews 16, 6598--6630. [https://doi.org/10.1016/j.rser.2012.09.002]

Beringer, T., Lucht, W., & Schaphoff, S. (2011). Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy, 3(4), 299--312. [https://doi.org/10.1111/j.1757-] [1707.2010.01088.x]

Boerrigter, H., Economy of Biomass-to-Liquids (BTL) plants.: An engineering assessment, 2006. Available at [http://www.ecn.nl/docs/library/report/2006/c06019.pdf] from the Energy research Centre of the Netherlands ([http://www.ecn.nl/]), Postbus 1, 1755 ZG Petten (NL). Accessed November 2020.

Bonner, I.J., K.G. Cafferty, D.J. Muth Jr., M.D. Tomer, D.E. James, S.A. Porter, D.L. Karlen. 2014. Opportunities for energy crop production based on subfield scale distribution of profitability. Energies 7: 6509-6526, 10.3390/ en7106509.

Bonomi, A., O. Cavallet, M.P. Cunha, M.A.P. da, Lima, Virtual biorefinery: an optimization strategy for renewable carbon valorization (1st ed), Springer (2015)

Borras Jr, S. M., Hall, R., Scoones, I., White, B., & Wolford, W. (2011). Towards a better understanding of global land grabbing: an editorial introduction. The Journal of Peasant Studies, 38(2), 209-216.

Brammer, J. 2002. The influence of feedstock drying on the performance and economics of a biomass gasifier-- engine CHP system. Biomass and Bioenergy 22 (4): 271--281. doi: 10.1016/S0961-9534(02)00003-X.; Cummer, K. 2002. Ancillary equipment for biomass gasification. Biomass and Bioenergy 23 (2): 113--128. doi: 10.1016/S0961- 9534(02)00038-7.

Bridgwater, A. V. 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 38:68-- 94. doi: 10.1016/j.biombioe.2011.01.048.

Brown, L. R. (2012). Full planet, empty plates: the new geopolitics of food scarcity. WW Norton & Company.

C

Capaz, Rafael S., Elisa M. de Medeiros, Daniela G. Falco, Joaquim E.A. Seabra, Patricia Osseweijer, and John A. Posada. 2020. "Environmental Trade-Offs of Renewable Jet Fuels in Brazil: Beyond the Carbon Footprint." Science of The Total Environment 714 (April): 136696. [https://doi.org/10.1016/j.scitotenv.2020.136696].

Carlson, K. M., Curran, L. M., Ratnasari, D., Pittman, A. M., Soares-Filho, B. S., Asner, G. P., ... & Rodrigues, H. O. (2012). Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia. Proceedings of the National Academy of Sciences, 109(19), 7559-7564.

Carlson, K. M., Curran L.M., Ratnasari D., Soares-Filho B.S., Rodrigues H.O., McDonald Pittman A., Asner G. P., Trigg S. N., Lawrence D. & Gaveau D. L. 2012. A. Expanding oil palm plantations in West Kalimantan, Indonesia: Impacts on land cover change and carbon emissions. Proceedings of the National Academy of Sciences. doi/10.1073/ pnas.1200452109.

Carr, J. A., D'Odorico, P., Laio, F., & Ridolfi, L. 2013. Recent History and Geography of Virtual Water Trade. PLoS ONE. [https://doi.org/10.1371/journal.pone.0055825].

Cassidy, E. S., West, P. C., Gerber, J. S., & Foley, J. A. (2013). Redefining agricultural yields: From tonnes to people nourished per hectare. Environmental Research Letters, 8(3), 034015. [https://doi.org/10.1088/1748-] [9326/8/3/034015]

Cedigaz (2019). Global biomethane market: Green gas goes global (press release, 20 March). [https://www.cedigaz.] [org/global-biomethane-market-green-gas-goes-global/].

Chuck, C.J., (Ed.), Biofuels for aviation: Feedstocks, technology and implementation, Academic Press is an imprint of Elsevier, Amsterdam, 2016.

Chagas, Mateus, Otavio Cavalett, Bruno Klein, Rubens Maciel Filho, and Antonio Bonomi. 2016. "Life Cycle Assessment of Technologies for Greenhouse Gas Emissions Reduction in Sugarcane Biorefineries." Chemical Engineering Transactions 50 (June): 421--26. [https://doi.org/10.3303/CET1650071].

Chakinala, Anand G., Derk W. F. Brilman, Wim P.M. van Swaaij, and Sascha R. A. Kersten. 2010. Catalytic and Non- catalytic Supercritical Water Gasification of Microalgae and Glycerol. Industrial & Engineering Chemistry Research 49 (3): 1113--1122. doi: 10.1021/ie9008293.

Chapagain, A. K., & Hoekstra, A. Y. (2008). The global component of freshwater demand and supply: An assessment of virtual water flows between nations as a result of trade in agricultural and industrial products. Water International. [https://doi.org/10.1080/02508060801927812].

Cherubin, Maurício Roberto, Dener Márcio da Silva Oliveira, Brigitte Josefine Feigl, Laisa Gouveia Pimentel, Izaias Pinheiro Lisboa, Maria Regina Gmach, Letícia Leal Varanda, Maristela Calvente Morais, Lucas Santos Satiro, Gustavo Vicentini Popin, Sílvia Rodrigues de Paiva, Arthur Klebson Belarmino dos Santos, Ana Luisa Soares de Vasconcelos, Paul Lineker Amaral de Melo, Carlos Eduardo Pellegrino Cerri, and Carlos Clemente Cerri. 2018. Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review. Scientia Agricola 75 (3): 255--272. doi: 10.1590/1678-992X-2016-0459.

Cherubini, Francesco, Neil D. Bird, Annette Cowie, Gerfried Jungmeier, Bernhard Schlamadinger, and Susanne Woess-Gallasch. 2009. "Energy- and Greenhouse Gas-Based LCA of Biofuel and Bioenergy Systems: Key Issues, Ranges and Recommendations." Resources, Conservation and Recycling 53 (8): 434--47. [https://doi.org/10.1016/j.] [resconrec.2009.03.013].

Connor J.A., R. Kamath, K.L. Walker, and T.E. McHugh. 2015. Review of quantitative surveys of the length and stability of MTBE, TBA, and benzene plumes in groundwater at UST sites. Ground Water 53(2):195-206. doi: 10.1111/gwat.12233.

Cotula, L. (2012). The international political economy of the global land rush: A critical appraisal of trends, scale, geography and drivers. The journal of peasant studies, 39(3-4), 649-680.

Cronin, J., Zabel, F., Dessens, O., Anandarajah, G. (2019) Land suitability for energy crops under scenarios of climate change and land-use. DOI: 10.1111/gcbb.12697.

D

Dale B. et al. 2016 "Biogasdoneright™: Food, Fuel and Environmental Services from Agriculture: An Innovative New System Is Commercialized in Italy" Biofuels, Bioproducts & Biorefining (2016); DOI: 10.1002/bbb.1671.

Dale, B.E., Bozzetto, S., Couturier, C., Fabbri, C., Hilbert, J.A., Ong, R., Richard, T., Rossi, L., Thelen, K.D. and Woods, J. 2020. The potential for expanding sustainable biogas production and some possible impacts in specific countries. Biofuels, Bioprod. Bioref. 14:1335-1347. https://doi.org/10.1002/bbb.2134.

Davis, K. F., Rulli, M. C., Seveso, A., & D'Odorico, P. (2017). Increased food production and reduced water use through optimized crop distribution. Nature Geoscience, 10(12), 919-924.

Davis, R., A. Aden, P.T. Pienkos, Techno-economic analysis of autotrophic microalgae for fuel production, Applied Energy 88 (2011) 3524--3531. [https://doi.org/10.1016/j.apenergy.2011.04.018].; J. Hoffman, R.C. Pate, T. Drennen, J.C. Quinn, Techno-economic assessment of open microalgae production systems, Algal Research 23 (2017) 51--57. [https://doi.org/10.1016/j.algal.2017.01.005].

Dayton, David C., Brian Turk, and Raghubir Gupta. 2019. Syngas Cleanup, Conditioning, and Utilization. In Thermochemical processing of biomass: Conversion into fuels, chemicals and power, ed. Robert C Brown and Robert C. Brown, 125--174. Hoboken, NJ: Wiley.

Dominguez-Faus, R., Powers, S. E., Burken, J. G., & Alvarez, P. J. (2009). The water footprint of biofuels: A drink or drive issue? In Environmental Science and Technology (Vol. 43, Issue 9, pp. 3005--3010). [https://doi.org/10.1021/] [es802162x].

Dornburg, V., van Vuuren, D., van de Ven, G., Langeveld, H., Meeusen, M., Banse, M., van Oorschot, M., Ros, J., Jan van den Born, G., Aiking, H., Londo, M., Mozaffarian, H., Verweij, P., Lysen, E., Faaij, A., 2010. Bioenergy revisited: Key factors in global potentials of bioenergy. Energy Environ. Sci. 3, 258. [https://doi.org/10.1039/b922422j].

De Oliveira, F. C., & Coelho, S. T. (2017). History, evolution, and environmental impact of biodiesel in Brazil: A review. Renewable and Sustainable Energy Reviews, 75(October 2016), 168--179. [https://doi.org/10.1016/j.] [rser.2016.10.060].

De Schutter, O. (2011a). Green Rush: The global race for farmland and the rights of land users. Harvard International Law Journal, 52, 503.

Dell'Angelo, Jampel, Grettel Navas, Marga Witteman, Giacomo D'Alisa, Arnim, Scheidel, Leah Temper (2021) Commons grabbing and agribusiness: violence, resistance and social mobilization. Ecological Economics (forthcoming)

Dell'Angelo, J., D'odorico, P., Rulli, M. C., & Marchand, P. (2017). The tragedy of the grabbed commons: coercion and dispossession in the global land rush. World Development, 92, 1-12.

Della-Bianca, B.E., T.O. Basso, B.U. Stambuk, L.C. Basso, A.K. Gombert, What do we know about the yeast strains from the Brazilian fuel ethanol industry?, Appl. Microbiol. Biotechnol. 97 (2013) 979--991. [https://doi.org/10.1007/] [s00253-012-4631-x].

Deshavath, Narendra Naik, Venkata Dasu Veeranki, and Vaibhav V. Goud. 2019. Lignocellulosic feedstocks for the production of bioethanol: availability, structure, and composition. In Sustainable bioenergy: Advances and impacts, ed. Mahendra Rai and Avinash P. Ingle, 1--19. Amsterdam, Netherlands, Cambridge, MA: Elsevier.

Dey, S., N.M. Reang, P.K. Das, M. Deb, A comprehensive study on prospects of economy, environment, and efficiency of palm oil biodiesel as a renewable fuel, Journal of Cleaner Production (2020) 124981. [https://doi.] [org/10.1016/j.jclepro.2020.124981].

Díaz-Pérez M.A., Serrano-Ruiz J.C. 2020. Catalytic Production of Jet Fuels from Biomass. Molecules:25(4):802. [https://doi.org/10.3390/molecules25040802].

Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. science, 321(5891), 926-929.; D'Odorico et al., The Global Food-Energy-Water Nexus. Reviews of Geophysics.

D'Odorico, P., Davis, K. F., Rosa, L., Carr, J. A., Chiarelli, D., Dell'Angelo, J., Gephart, J., MacDonald, G. K., Seekell, D. A., Suweis, S., & Rulli, M. C. (2018). The Global Food-Energy-Water Nexus. Reviews of Geophysics, 56(3), 456--531. [https://doi.org/10.1029/2017RG000591].

van der Drift, A., H. Boerrigter, B. Coda, M.K. Cieplik, K. Hemmes, Entrained flow gasification of biomass---Ash behaviour, feeding issues, and system analyses. Report ECN-C--04-039, 2004.

Dunn, J.B., S. Mueller, H. Kwon, M. Q. Wang. 2013. Land-use change and greenhouse gas emissions from corn and cellulosic ethanol. Biotechnology for Biofuels. 6, 51.

E

Edenhofer, Ottmar, Ramón Pichs Madruga, Y. Sokona, United Nations Environment Programme, World Meteorological Organization, Intergovernmental Panel on Climate Change, and Potsdam-Institut für Klimafolgenforschung, eds. 2012. Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press.

EIA, Energy Information Administration, 2007. Biofuels in the US Transportation Sector. Published in Annual Energy Outlook 2007, February 2007

Ekouevi, Koffi; Tuntivate, Voravate. 2012. Household Energy Access for Cooking and Heating : Lessons Learned and the Way Forward. A World Bank Study. Washington, DC: World Bank. © World Bank. [https://openknowledge.] [worldbank.org/handle/10986/9372] License: CC BY 3.0 IGO.

Elliott, Douglas C., Patrick Biller, Andrew B. Ross, Andrew J. Schmidt, and Susanne B. Jones. 2015. Hydrothermal liquefaction of biomass: developments from batch to continuous process. Bioresource technology 178:147--156. doi: 10.1016/j.biortech.2014.09.132.

ENI. Ecofining. [https://www.eni.com/it-IT/attivita/biocarburanti-sostenibili-ecofining-tm.html]. Accessed 5 July 2020.

Endres, J.M., Diaz-Chaves, R., Kaffka, S.R., Pelkmans, L., Seabra, J.E.A., Walter, A., 2015. Sustainability certification, in: Bioenergy & Sustainability: Bridging the Gaps. Scientific Committee on Problems of the Environment (SCOPE), Paris Cedex, pp. 660--681.

Erb, K. H., Lauk, C., Kastner, T., Mayer, A., Theurl, M. C., & Haberl, H. (2016). Exploring the biophysical option space for feeding the world without deforestation. Nature communications, 7, 11382.; Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., ... & Balzer, C. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337-342.

European Commission, 2020. Voluntary schemes [WWW Document]. URL [https://ec.europa.eu/energy/topics/] [renewable-energy/biofuels/voluntary-schemes_en#approved-voluntary-schemes].; European Union, 2018. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (recast).

The European Parliament and the Council of the European Union. (2009). Renewable Energy Directive 2009/28/ EC. Official Journal of the European Union.

European Union (2009). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union, 5, 2009.

European Union. 2012. Proposal for a directive of the European Parliament and of the council amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources, European Commission, Bruxelles.

European Union. 2018. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources (Recast).

F

"Fact 22: Water & Biofuels | United Nations Educational, Scientific And Cultural Organization". 2014. Unesco.Org. [http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/facts-and-figures/all-facts-wwdr3/] [fact-22-water-biofuels/].

Fajardy, M., & Mac Dowell, N. (2017). Can BECCS deliver sustainable and resource efficient negative emissions? Energy and Environmental Science, 10(6), 1389--1426. [https://doi.org/10.1039/c7ee00465f]

Falkenmark, M., & Rockström, J. (2006). The new blue and green water paradigm: Breaking new ground for water resources planning and management. In Journal of Water Resources Planning and Management. [https://doi.] [org/10.1061/(ASCE)0733-9496(2006)132:3(129)].

Fang, Kegong, Debao Li, Minggui Lin, Minglin Xiang, Wei Wei, and Yuhan Sun. 2009. A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas. Catalysis Today 147 (2): 133--138. doi: 10.1016/j.cattod.2009.01.038.

FAO, The state of food and agriculture 2008: Prospects, risks and opportunities, Food and Agriculture Organization of the United Nations, Rome, 2008.

FAO. 2008. The state of food and agriculture 2008: Biofuels: Prospects, risks and opportunities (Vol. 38). Food & Agriculture Organization.

Food and Agriculture Organization of the United Nations. Bioenergy, & Food Security Project. 2010. Bioenergy and food security: the BEFS Analytical Framework (No. 16). Food & Agriculture Org.

Food and Agriculture Organization of the United States. (2013). The State of Food Insecurity in the World, 2013: The Multiple Dimensions of Food Security. Food and Agricultural Organization of the United Nations.

FAO-OECD. 2011.Food and Agriculture Organization/Organization for Economic Co-operation and Development: Price Volatility in Food and Agricultural Markets: Policy Responses. Food and Agriculture Organization of the United Nations, Rome, Italy.

Fargione, J., J. Hill, D. Tilman, S. Polasky, & P. Hawthorne. 2008. Land clearing and the biofuel carbon debt. Science 319:1235--1238.

Fedoroff, N. V., Battisti, D. S., Beachy, R. N., Cooper, P. J., Fischhoff, D. A., Hodges, C. N., ... & Reynolds, M. P. (2010). Radically rethinking agriculture for the 21st century. science, 327(5967), 833-834.

Feyereisen, G.W., G.T.T. Camargo, R.E. Baxter, J.M. Baker and T.L. Richard. 2013. Cellulosic biofuel potential of a winter rye double crop across the U.S. cornsoybean belt. Agronomy Journal 105(3):631-642.

Field, John L., Tom L. Richard, Erica A. H. Smithwick, Hao Cai, Mark S. Laser, David S. LeBauer, Stephen P. Long, et al. 2020. "Robust Paths to Net Greenhouse Gas Mitigation and Negative Emissions via Advanced Biofuels." Proceedings of the National Academy of Sciences 117 (36): 21968--77. [https://doi.org/10.1073/] [pnas.1920877117].

Fingerman, K. R., Torn, M. S., O'Hare, M. H., & Kammen, D. M. (2010). Accounting for the water impacts of ethanol production. Environmental Research Letters, 5(1), 014020. [https://doi.org/10.1088/1748-9326/5/1/014020]

Finnveden, Göran, Michael Z. Hauschild, Tomas Ekvall, Jeroen Guinée, Reinout Heijungs, Stefanie Hellweg, Annette Koehler, David Pennington, and Sangwon Suh. 2009. "Recent Developments in Life Cycle Assessment." Journal of Environmental Management 91 (1): 1--21. [https://doi.org/10.1016/j.jenvman.2009.06.018].

Fischer, G., Nachtergaele, F. O., Prieler, S., Teixeira, E., Tóth, G., Van Velthuizen, H., ... & Wiberg, D. (2012). Global agro-ecological zones (GAEZ v3. 0)-model documentation.

Fitzherbert, E.B., Struebig, M.J., Morel, A., Danielson, F., Bruhl, C.A., Donald, P.F. et al. 2008. How will oil palm expansion affect biodiversity? Trends Ecol. Evol., 23, 538--545.

Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., ... & Balzer, C. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337-342.

Fuys, A., Mwangi, E., & Dohrn, S. (2008). Securing common property regimes in a globalizing world. Rome: The International Land Coalition.

Freitas, Cláudia, Teresa Margarida Parreira, José Roseiro, Alberto Reis, and Teresa Lopes da Silva. 2014. Selecting low-cost carbon sources for carotenoid and lipid production by the pink yeast Rhodosporidium toruloides NCYC 921 using flow cytometry. Bioresource technology 158:355--359. doi: 10.1016/j.biortech.2014.02.071.

G

Garnett, T., Appleby, M. C., Balmford, A., Bateman, I. J., Benton, T. G., Bloomer, P., ... & Herrero, M. (2013). Sustainable intensification in agriculture: premises and policies. Science, 341(6141), 33-34.

Garrett, R. D., Rueda, X., & Lambin, E. F. (2013). Globalization's unexpected impact on soybean production in South America: linkages between preferences for non-genetically modified crops, eco-certifications, and land use. Environmental Research Letters, 8(4), 044055.

Gawel, E., & Ludwig, G. (2011). The iLUC dilemma: How to deal with indirect land use changes when governing energy crops?. Land Use Policy, 28(4), 846-856.

Gelfand, I., Sahajpal, R., Zhang, X., Izaurralde, R. C., Gross, K. L., & Robertson, G. P. (2013). Sustainable bioenergy production from marginal lands in the US Midwest. Nature, 493(7433), 514--517. [https://doi.org/10.1038/] [nature11811]

Gerbens-Leenes, Bioenergy water footprints, comparing first, second and third generation feedstocks for bioenergy supply in 2040.

Gerbens-Leenes, P.W., Hoekstra, A.Y. & Van der Meer Th.H. 2009. The water footprint of bioenergy. Proceedings of the National Academy of Science 106(25): 10219-10223.

Gerbens-Leenes, P.W., Lienden, A.R.v., et al. 2010. Biofuel scenarios in a water perspective: the global blue and green water footprint of road transport in 2030. Global Environmental Change 22 (3), 764--775.

Gerbens-Leenes, P. W. (2018). Green, Blue and Grey Bioenergy Water Footprints, a Comparison of Feedstocks for Bioenergy Supply in 2040. Environmental Processes, 5, 167--180. [https://doi.org/10.1007/s40710-018-0311-x].

Gernaat, D.E.H.J., de Boer, H.S., Daioglou, V. et al. Climate change impacts on renewable energy supply. Nat. Clim. Chang. 11, 119--125 (2021). [https://doi.org/10.1038/s41558-020-00949-9].

Goh, C. S. & Lee, K. T. 2010. Will biofuel projects in Southeast Asia become white elephants? Energy Policy, 38, 3847-3848.

Goh, C. S., Wicke, B., Potter, L., Faaij, A., Zoomers, A. & Junginger, M. 2017. Exploring Under-utilised Low Carbon Land Resources From Multiple Perspectives: Case Studies On Regencies In Kalimantan. Land Use Policy, 60, 150-168.

Gollakota, A.R.K., Nanda Kishore, and Sai Gu. 2018. A review on hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews 81:1378--1392. doi: 10.1016/j.rser.2017.05.178.

GranBio, "What is energy cane?". [http://www.granbio.com.br/en/conteudos/energy-cane]. Accessed October 2020.

Griscom, B.W., Adams, J., Ellis, P.W., Houghton, R.A., Lomax, G., Miteva, D.A., Schlesinger, W.H., Shoch, D., Siikamäki, J.V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M.R., Herrero, M., Kiesecker, J., Landis, E., Laestadius, L., Leavitt, S.M., Minnemeyer, S., Polasky, S., Potapov, P., Putz, F.E., Sanderman, J., Silvius, M., Wollenberg, E., & Fargione, J. 2017. Natural climate solutions. PNAS, 114(44), 11645-- 11650. [https://doi.org/10.1073/pnas.1710465114].

Gupta, Priyanka, Raj Shekhar Singh, Ashish Sachan, Ambarish S. Vidyarthi, and Asha Gupta. 2012. A re-appraisal on intensification of biogas production. Renewable and Sustainable Energy Reviews 16 (7): 4908--4916. doi: 10.1016/j.rser.2012.05.005.

H

Haberl, H., Erb, K.-H., Krausmann, F., Bondeau, A., Lauk, C., Müller, C., ..., Steinberger, J. K. (2011). Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields. Biomass and Bioenergy, 35(12), 4753--4769. [https://doi.org/10.1016/j.biomb ioe.2011.04.035]

Harvey, M., & Pilgrim, S. (2011). The new competition for land: Food, energy, and climate change. Food policy, 36, S40-S51.

Hermele, K. 2014. The Appropriation of Ecological Space. Agrofuels, unequal exchange and environmental load displacements, Rutledge ed. pp. 158, New York.

Hertel, T. W., Golub, A. A., Jones, A. D., O'Hare, M., Plevin, R. J., & Kammen, D. M. (2010). Effects of US corn ethanol on global land use and greenhouse gas emissions: Estimating market-mediated responses. BioScience, 60(3), 223--231. [https://doi.org/10.1525/bio.2010.60.3.8]

Hiloidhari, Moonmoon, Dhiman Das, and D. C. Baruah. 2014. Bioenergy potential from crop residue biomass in India. Renewable and Sustainable Energy Reviews 32:504--512. doi: 10.1016/j.rser.2014.01.025.

Ho, D. P., Ngo, H. H., & Guo, W. (2014). A mini review on renewable sources for biofuel. In Bioresource Technology (Vol. 169, pp. 742--749). Elsevier Ltd. [https://doi.org/10.1016/j.biortech.2014.07.022]

Hochman, G., Kaplan, S., Rajagopal, D., & Zilberman, D. (2012). Biofuel and food-commodity prices. Agriculture, 2(3), 272-281.

Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., & Mekonnen, M. M. (2012). The Water Footprint Assessment Manual. In The Water Footprint Assessment Manual. [https://doi.org/10.4324/9781849775526].

"H.R.6 - 110Th Congress (2007-2008): Energy Independence And Security Act Of 2007". 2021. Congress.Gov. [https://www.congress.gov/bill/110th-congress/house-bill/6].

Hu, J., 2017. Decreasing desired opportunity for energy supply of a globally acclaimed biofuel crop in a changing climate. Renewable and Sustainable Energy Reviews, 76, pp.857-864.

Hu, Qiang, Milton Sommerfeld, Eric Jarvis, Maria Ghirardi, Matthew Posewitz, Michael Seibert, and Al Darzins. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant journal : for cell and molecular biology 54 (4): 621--639. doi: 10.1111/j.1365-313X.2008.03492.x.

Hughes, S. R., & Qureshi, N. 2014. Biomass for Biorefining: Resources, Allocation, Utilization, and Policies. In Biorefineries(pp. 37-58).

I

ICAO, 2018. Sustainable aviation fuels guide, Version 2. ed, Transforming Global Aviation Collection. ICAO, UNDP, GEF

IIASA, & FAO. (2012). Global Agro-ecological Zones Model Documentation. [http://www.fao.org/fileadmin/user_] [upload/gaez/docs/GAEZ_Model_Documentation.pdf]

IEA (Ed.), 2004. Biofuels for transport: an international perspective. International Energy Agency, Paris, France. IEA 2011, Significance and potential of crop digestion in Bioenergy Task 37: Biogas from crop digestion.

IEA 2011, Technology for anaerobic digestion of crops in Bioenergy Task 37 :Biogas from crop digestion. IEA. (2016). World Energy Outlook 2016 - LubaValby7566.pdf.

IEA, 2017. Technology Roadmap - Delivering Sustainable Bioenergy. International Energy Agency, Paris, France IEA, 2019. CO2 emissions from fuel combustion 2019, Statistics. International Energy Fgency, France.

IEA (2019), How competitive is biofuel production in Brazil and the United States?, IEA, Paris [https://www.iea.] [org/articles/how-competitive-is-biofuel-production-in-brazil-and-the-united-states]. Accessed November 2020.

IEA. (2019). Transport biofuels. In Renewables 2019: Analysis and forecast to 2024. IEA, 2019. World Energy Outlook 2019. OECD/IEA, Paris, France.

IEA. 2020. Global Energy Review 2020 - The impacts of the Covid-19 crisis on global energy demand and CO2 emissions. International Energy Agency, Paris.

IEA 2020, "Global EV Outlook: entering the decade of electric drive?".

IEA (2020), Hydrogen, IEA, Paris [https://www.iea.org/reports/hydrogen]. Accessed November 2020 IEA. 2020. Oil Market Report - April 2020 -- Analysis - IEA. In International Energy Agency.

IEA 2020, "Outlook for biogas and biomethane: prospects for organic growth".

IEA. 2020. "Renewable Energy Market Update". Fuel Report. Paris: International Energy Agency. [https://www.iea.] [org/reports/renewable-energy-market-update].

IEA, 2021. "Net Zero by 2050: A Roadmap for Global Energy Sector". [https://www.iea.org/reports/net-zero-] [by-2050]

Eia.Gov. 2021. [https://www.eia.gov/todayinenergy/detail.php?id=40095].

Eia.Gov. 2021. [https://www.eia.gov/todayinenergy/detail.php?id=33212].

International Energy Agency. (2020). Transport biofuels. In Renewables 2020: Analysis and forecast to 2025. FAOSTAT, FAO Statistics Division: [http://www.fao.org/faostat/en/#home]. Accessed November 2020.

IPCC (Ed.), 2014. Climate change 2014: mitigation of climate change: Working Group III contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, NY.

IPCC, 2018. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre- industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, IPCC Special Report. Intergovernmental Panel on Climate Change.

"IPCC --- Intergovernmental Panel On Climate Change". 2021. AR6 Climate Change 2021: The Physical Science Basis Ipcc.Ch. [https://www.ipcc.ch/].

IRENA, 2017. Renewable Energy and Jobs. Annual Review 2017.

J

Jägermeyr, J., Pastor, A., Biemans, H., & Gerten, D. (2017). Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation. Nature Communications, 8(1), 1-9.

Jaime R, Alca´ntara JM, Manzaneda AJ, Rey PJ (2018) Climate change decreases suitable areas for rapeseed cultivation in Europe but provides new opportunities for white mustard as an alternative oilseed for biofuel production. PLoS ONE 13(11): e0207124. [https://doi.org/10.1371/journal.pone.0207124].

Jarchow, M.E., M. Liebman, S. Dhungel, R. Dietzel, D. Sundberg, R.P. Anex, M.L. Thompson, T. Chua. 2015. Tradeoffs among agronomic, energetic, and environmental performance characteristics of corn and prairie bioenergy cropping systems. GCB Bioenergy 7: 57-71, 10.1111/gcbb.12096.

Jaung, W., Wiraguna, E., Okarda, B., Artati, Y., Goh, C., Syahru, R., Leksono, B., Prasetyo, L., Lee, S. & Baral, H. 2018. Spatial Assessment of Degraded Lands for Biofuel Production in Indonesia. Sustainability, 10.

Johnston, M., Holloway, T. A global comparison of national biodiesel production potentials, Environ. Sci. Technol. 41 (2007) 7967--7973. [https://doi.org/10.1021/es062459k].

Johnston, M., Licker, R., Foley, J., Holloway, T., Mueller, N. D., Barford, C., & Kucharik, C. (2011). Closing the gap: global potential for increasing biofuel production through agricultural intensification. Environmental research letters, 6(3), 034028.

K

Kahsay, A., Haile, M., Gebresamuel, G., & Mohammed, M. (2018). Land suitability analysis for sorghum crop production in northern semi-arid Ethiopia: Application of GIS-based fuzzy AHP approach. Cogent Food & Agriculture, 4(1), 1--24. [https://doi.org/10.1080/23311 932.2018.1507184]

Kothari, Richa, A. K. Pandey, S. Kumar, V. V. Tyagi, and S. K. Tyagi. 2014. Different aspects of dry anaerobic digestion for bio-energy: An overview. Renewable and Sustainable Energy Reviews 39:174--195. doi: 10.1016/j. rser.2014.07.011.

Kyle, P., C. Müller, K. Calvin, and A. Thomson (2014), Meeting the radiative forcing targets of the representative concentration pathways in a world with agricultural climate impacts, Earth's Future, 2, 83--98, doi:10.1002/2013EF000199.

L

Lambin, E. F. & Meyfroidt, P. 2011. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465--3472.

Langeveld, H., Dixon, J., Keulen, H. van (Eds.), 2014. Biofuel cropping systems: carbon, land, and food, First edition. ed. Routledge, Abingdon, Oxon.

Lapola, D. M., Schaldach, R., Alcamo, J., Bondeau, A., Koch, J., Koelking, C., & Priess, J. A. 2010. Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3388--3393. [https://doi.org/10.1073/pnas.0907318107].

Lark, T. J., Salmon, J. M., & Gibbs, H. K. (2015). Cropland expansion outpaces agricultural and biofuel policies in the United States. Environmental Research Letters, 10(4), 044003.

Larson, E.D., H. Jin, F.E. Celik, Large-scale gasification-based coproduction of fuels and electricity from switchgrass, Biofuels, Bioprod. Bioref 3 (2009) 174--194. [https://doi.org/10.1002/bbb.137].

Leguizamón, A. 2016. Disappearing nature? Agribusiness, biotechnology and distance in Argentine soybean production. The Journal of Peasant Studies, 43(2), 313-330.

Leiva-Candia, D. E., S. Pinzi, M. D. Redel-Macías, Apostolis Koutinas, Colin Webb, and M. P. Dorado. 2014. The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel 123:33-- 42. doi: 10.1016/j.fuel.2014.01.054.

Lima, M., M. Skutsch, & de Medeiros Costa G. 2011. Deforestation and the social impacts of soy for biodiesel: perspectives of farmers in the south Brazilian Amazon. Ecology and Society16(4): 04. [http://dx.doi.org/10.5751/] [ES-04366-160404].

"Low Carbon Fuel Standard | California Air Resources Board". 2021. Ww2.Arb.Ca.Gov. [https://ww2.arb.ca.gov/our-] [work/programs/low-carbon-fuel-standard].

Luo, Lin, Ester van der Voet, and Gjalt Huppes. 2009. "Life Cycle Assessment and Life Cycle Costing of Bioethanol from Sugarcane in Brazil." Renewable and Sustainable Energy Reviews 13 (6--7): 1613--19. [https://doi.org/10.1016/j.] [rser.2008.09.024].

Lynd, L. 2017. The grand challenge of cellulosic biofuels. Nat Biotechnol 35, 912--915. [https://doi.org/10.1038/] [nbt.3976].

M

Macedo, Isaias C., Joaquim E.A. Seabra, and João E.A.R. Silva. 2008. "Green House Gases Emissions in the Production and Use of Ethanol from Sugarcane in Brazil: The 2005/2006 Averages and a Prediction for 2020." Biomass and Bioenergy 32 (7): 582--95. [https://doi.org/10.1016/j.biombioe.2007.12.006].

Marathon Petroleum Corporation. Dickinson Refinery. [https://www.marathonpetroleum.com/Operations/] [Refining/Dickinson-Refinery/]. Accessed 5 July 2020.

Martinez-Feria, R.A., Basso, B. 2020. Unstable crop yields reveal opportunities for site-specific adaptations to climate variability. Sci Rep 10:2885. [https://doi. org/10.1038/s41598-020-59494-2].

Mbow, C., C.Rosenzweig, L.G.Barioni, T.G.Benton, M.Herrero,M.Krishnapillai,E.Liwenga,P.Pradhan,M.G.Rivera- Ferre, T. Sapkota, F.N. Tubiello, Y. Xu, 2019: Food Security. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D.C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. In press.

Mehmood, M. A., Ibrahim, M., Rashid, U., Nawaz, M., Ali, S., Hussain, A., & Gull, M. (2017). Biomass production for bioenergy using marginal lands. Sustainable Production and Consumption, 9, 3--21. [https://doi.org/10.1016/j.] [spc.2016.08.003]

Mekonnen, M. M., & Hoekstra, A. Y. (2016). Sustainability: Four billion people facing severe water scarcity. Science Advances, 2(2), 1--7. [https://doi.org/10.1126/sciadv.1500323].

Mitchel, D. (2008). A note on rising food prices. The World Bank.; Sorda, G., Banse, M., & Kemfert, C. (2010). An overview of biofuel policies across the world. Energy Policy, 38(11), 6977--6988. [https://doi.org/10.1016/j.] [enpol.2010.06.066]

Mohr, A., & Raman, S. (2015). Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Efficiency and Sustainability in Biofuel Production: Environmental and Land-Use Research, 63, 281--310. [https://doi.org/10.1016/j.enpol.2013.08.033]

Moreira, Marcelo M. R., Joaquim E. A. Seabra, Lee R. Lynd, Sofia M. Arantes, Marcelo P. Cunha, and Joaquim J. M. Guilhoto. 2020. "Socio-Environmental and Land-Use Impacts of Double-Cropped corn Ethanol in Brazil." Nature Sustainability 3 (3): 209--16. [https://doi.org/10.1038/s41893-019-0456-2].

Muller et al. 2021. Impact of transnational land acquisitions on local food security and dietary diversity. Proceedings of the National Academy of Sciences of the United States of America. 118 (4).

Mueller-Langer, F., S. Majer, A. Perimenis, Biofuels: A Technical, Economic and Environmental Comparison, in: L.Y. Bronicki (Ed.), Renewable energy systems, Springer, New York, 2012, pp. 110--137.

Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature, 490(7419), 254-257.

Muth, D.J., 2014. Profitability versus environmental performance: are they competing? J Soil Water Conserv 69:203A-206A.

N

Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. In Renewable and Sustainable Energy Reviews (Vol. 14, Issue 2, pp. 578--597). Pergamon. [https://doi.org/10.1016/j.rser.2009.10.003].

National Academies of Sciences, Engineering, Medicine. 2016. Commercial Aircraft Propulsion and Energy Systems Research: Reducing the Global Carbon Emissions. Washington, D.C., The National Academies Press. [https://www.nap.edu/23490].

Naylor, R. L., Liska, A. J., Burke, M. B., Falcon, W. P., Gaskell, J. C., Rozelle, S. D., & Cassman, K. G. (2007). The ripple effect: biofuels, food security, and the environment. Environment: Science and Policy for Sustainable Development, 49(9), 30-43.

"Next-Gen Biofuel Dreams Fade; Developers Blame EPA". 2021. Agri-Pulse.Com. [https://www.agri-pulse.com/] [articles/12894-cellulosic-ethanol-struggles-toclimb-commercialization-ladder].

Nigam, P.S., A. Singh / Progress in Energy and Combustion Science 37 (2011) 52-68

Nolte, K., & Ostermeier, M. (2017). Labour market effects of large-scale agricultural investment: conceptual considerations and estimated employment effects. World Development, 98, 430-446.

van Noordwijk, M., Khasanah, N., Dewi, S., 2017. Can intensification reduce emission intensity of biofuel through optimized fertilizer use? Theory and the case of oil palm in Indonesia. GCB Bioenergy 9, 940--952. [https://doi.] [org/10.1111/gcbb.12398]

Norsker, N.-H., M.J. Barbosa, M.H. Vermuë, R.H. Wijffels, Microalgal production--a close look at the economics, Biotechnol. Adv. 29 (2011) 24--27. [https://doi.org/10.1016/j.biotechadv.2010.08.005].

O

OECD/FAO. 2019. Agricultural outlook 2019-2028. Special focus: Latin America. OECD Publishing / Food and Agriculture Organization of the United Nations, Paris, France and Rome, Italy.

OECD/FAO. 2019. "OECD-FAO Agricultural Outlook". OECD Agriculture statistics (database). [http://dx.doi.] [org/10.1787/agr-outl-data-en].

Owens, V.N. 2018. Sun Grant/DOE Regional Feedstock Partnership, Final Technical Report. E-Link Report/Product Number: DOE-SDSU-85041 [https://www.osti.gov/servlets/purl/1463330].

P

Palmqvist, E., B. Hahn-Hägerdal, Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition, Bioresour. Technol. 74 (2000) 25--33. [https://doi.org/10.1016/S0960-8524(99)00161-3].

Pelkmans, L., Goovaerts, L., Smith, C.T., Joudrey, J., Stupak, I., Englund, O., Junginger, M., Goh, C.S., Chum, H.L., Cowie, A., 2013. Recommendations for improvement of sustainability certified markets, Strategic Inter-Task Study: Monitoring Sustainability Certification of Bioenergy. IEA Bioenergy.

Peng, Licheng, Christopher Q. Lan, Zisheng Zhang, Cody Sarch, and Matt Laporte. 2015. Control of protozoa contamination and lipid accumulation in Neochloris oleoabundans culture: Effects of pH and dissolved inorganic carbon. Bioresource technology 197:143--151. doi: 10.1016/j.biortech.2015.07.101.

Peter, G. 1993. World'S Fresh Water Resources. In Water In Crisis - A Guide to the World`s Fresh Water Resources.

Pienkos, Philip T., and Al Darzins. 2009. The promise and challenges of microalgal-derived biofuels. Biofuels, Bioproducts and Biorefining 3 (4): 431--440. doi: 10.1002/bbb.159.

Phillips, S.D., J.K. Tarud, M.J. Biddy, A. Dutta, Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies, Report NREL TP-5100-47594, 2011.

Phillips, T. (2008). Genetically modified organisms (GMOs): Transgenic crops and recombinant DNA technology. Nature Education, 1(1), 213.

Prasad, S., Mahesh K. Malav, S. Kumar, Anoop Singh, Deepak Pant, and S. Radhakrishnan. 2018. Enhancement of bio-ethanol production potential of wheat straw by reducing furfural and 5-hydroxymethylfurfural (HMF). Bioresource Technology Reports 4:50--56. doi: 10.1016/j.biteb.2018.09.007.

R

Ramos, M.J., C.M. Fernández, A. Casas, L. Rodríguez, A. Pérez, Influence of fatty acid composition of raw materials on biodiesel properties, Bioresour. Technol. 100 (2009) 261--268. [https://doi.org/10.1016/j.biortech.2008.06.039].

Renewables 2020 Global Status Report. (2020). Renewables Global Status Report. REN21 Secretariat. Renewable Fuels Association (RFA). 2015. Pocket guide to ethanol. Washington.

"Renewable Fuel Pathways II Final Rule To Identify Additional Fuel Pathways Under Renewable Fuel Standard Program | US EPA". 2021. US EPA. [https://www. epa.gov/renewable-fuel-standard-program/renewable-fuel-] [pathways-ii-final-rule-identify-additional-fuel].

Rockström, J., Falkenmark, M., Lannerstad, M., & Karlberg, L. (2012). The planetary water drama: Dual task of feeding humanity and curbing climate change. Geophysical Research Letters. [https://doi.] [org/10.1029/2012GL051688].

Roesijadi, G., S. B. Jones, L. J. Snowden-Swan and Y. Zhu. 2010. Macroalgae as a biomass feedstock: a preliminary analysis. Pacific Northwest National Laboratory.

Rosa, L., Davis, K. F., Rulli, M. C., & D'Odorico, P. (2017). Environmental consequences of oil production from oil sands. Earth's Future, 5(2), 158-170.

Rosa, L., Rulli, M. C., Davis, K. F., Chiarelli, D. D., Passera, C., & D'Odorico, P. (2018). Closing the yield gap while ensuring water sustainability. Environmental Research Letters, 13(10). [https://doi.org/10.1088/1748-9326/aadeef]

Rulli, M. C., Bellomi, D., Cazzoli, A., De Carolis, G., & D'Odorico, P. (2016). The water-land-food nexus of first- generation biofuels. Scientific Reports, 6(1), 1--10. [https://doi.org/10.1038/srep22521]

Rulli, M. C., Casirati, S., Dell'Angelo, J., Davis, K. F., Passera, C., & D'Odorico, P. (2019). Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest. Renewable and Sustainable Energy Reviews, 105, 499-512.

S

Sanchez, Daniel L., Nils Johnson, Sean T. McCoy, Peter A. Turner, and Katharine J. Mach. 2018. "Near-Term Deployment of Carbon Capture and Sequestration from Biorefineries in the United States." Proceedings of the National Academy of Sciences 115 (19): 4875--80. [https://doi.org/10.1073/pnas.1719695115].

Sanchez, D.L, J.H. Nelson, J. Johnston, A. Mileva, D.M. Kammen. 2015. Biomass enables the transition to a carbon-negative power system across western North America. Nature Climate Change. 5, 230--234. [https://doi.] [org/10.1038/ nclimate2488].

Scanlon, B. R., Ruddell, B. L., Reed, P. M., Hook, R. I., Zheng, C., Tidwell, V. C., & Siebert, S. (2017). The food- energy-water nexus: Transforming science for society. Water Resources Research, 53(5), 3550-3556.

Scheidel, A., & Sorman, A. H. (2012). Energy transitions and the global land rush: Ultimate drivers and persistent consequences. Global Environmental Change, 22(3), 588-595.

Seabra, Joaquim E. A., Isaias C. Macedo, Helena L. Chum, Carlos E. Faroni, and Celso A. Sarto. 2011. "Life Cycle Assessment of Brazilian Sugarcane Products: GHG Emissions and Energy Use." Biofuels, Bioproducts and Biorefining 5 (5): 519--32. [https://doi.org/10.1002/bbb.289].

Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., & Yu, T. H. (2008). Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319(5867), 1238--1240. [https://doi.org/10.1126/science.1151861].

Sen, A. (1982). The food problem: Theory and policy. Third World Quarterly, 4(3), 447-459.

Shahabuddin, M., M.T. Alam, B.B. Krishna, T. Bhaskar, G. Perkins, A review on the production of renewable aviation fuels from the gasification of biomass and residual wastes, Bioresour. Technol. 312 (2020) 123596. [https://doi.] [org/10.1016/j.biortech.2020.123596].

Silva, Cinthia R. U. da, Henrique Coutinho Junqueira Franco, Tassia Lopes Junqueira, Lauran van Oers, Ester van der Voet, and Joaquim E. A. Seabra. 2014. "Long-Term Prospects for the Environmental Profile of Advanced Sugar Cane Ethanol." Environmental Science & Technology 48 (20): 12394--402. [https://doi.] [org/10.1021/es502552f].

Singh, Jasvinder, and Sai Gu. 2010. Commercialization potential of microalgae for biofuels production. Renewable and Sustainable Energy Reviews 14 (9): 2596--2610. doi: 10.1016/j.rser.2010.06.014.

Smit, H. H., Meijaard, E., Van Der Laan, C., Mantel, S., Budiman, A. & Verweij, P. 2013. Breaking the Link between Environmental Degradation and Oil Palm Expansion: A Method for Enabling Sustainable Oil Palm Expansion. PLoS ONE, 8.

Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., ..., Yongsung, C. (2016). Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 6(1), 42--50. [https://doi.org/10.1038/nclim ate2870]

Smith P, Gregory PJ, Van Vuuren DP, Obersteiner M, Havlík P, Rounsevell M, Woods J, Stehfest E & Bellarby J. 2010. Competition for land. Phil Trans R Soc B: Biol Sci 365:2941--2957.

Soetaert, Wim, and Erick J. Vandamme. Ü2009. Biofuels. Hoboken, N.J: Wiley.

Souza, G.M., Victoria, R.L., Joly, C.A., Verdade, L.M., 2015. Bioenergy & sustainability: bridging the gaps. Scientific Committee on Problems of the Environment (SCOPE), Paris Cedex.

Spiertz, J.H.J. Nitrogen, sustainable agriculture and food security. A review. Agron. Sustain. Dev. 30, 43--55 (2010). [https://doi.org/10.1051/agro:2008064]

Stucki, Samuel, Frédéric Vogel, Christian Ludwig, Anca G. Haiduc, and Martin Brandenberger. 2009. Catalytic gasification of algae in supercritical water for biofuel production and carbon capture. Energy & Environmental Science 2 (5): 535. doi: 10.1039/b819874h.

Subhadra, B. G., & Edwards, M. (2011). Coproduct market analysis and water footprint of simulated commercial algal biorefineries. Applied Energy, 88(10), 3515--3523. [https://doi.org/10.1016/j.apenergy.2010.12.051].

"Summit Carbon Solutions To Launch Major CCS Network To Reduce Carbon Footprint Of U.S. Biorefineries - Chemical Engineering". 2021. Chemical Engineering. [https://www.chemengonline.com/summit-carbon-solutions-] [to-launch-major-ccs-network-to-reduce-carbon-footprint-of-u-s-biorefineries/].

Sunde, K., A. Brekke, B. Solberg, Environmental Impacts and Costs of Hydrotreated Vegetable Oils, Transesterified Lipids and Woody BTL---A Review, Energies 4 (2011) 845--877. [https://doi.org/10.3390/en4060845].

S.-Y. No, Application of hydrotreated vegetable oil from triglyceride based biomass to CI engines -- A review, Fuel 115 (2014) 88--96. [https://doi.org/10.1016/j.fuel.2013.07.001].

T

Taheripour, F., W. E. Tyner, M. Q. Wang. 2011.Global land use changes due to the US cellulosic biofuel program simulated with the GTAP model. Argonne National Laboratory. [https://greet.es.anl.gov/publication-luc_ethanol].

Tian, Y., Zhao, L., Meng, H., Sun, L., Yan, J. 2009. Estimation of un-used land potential for biofuels development in (the) People's Republic of China. Applied Energy 86: 77--85. doi: 10.1016/j.apenergy.2009.06.007.

Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the national academy of sciences, 108(50), 20260-20264.

Tilman, D., Socolow, R., Foley, J. A., Hill, J., Larson, E., Lynd, L., Pacala, S., Reilly, J., Searchinger, T., Somerville, C., & Williams, R. (2009). Beneficial biofuels - The food, energy, and environment trilemma. Science, 325(5938), 270--271. [https://doi.org/10.1126/science.1177970]

Tock, L., M. Gassner, F. Maréchal, Thermochemical production of liquid fuels from biomass: Thermo-economic modeling, process design and process integration analysis, Biomass and Bioenergy 34 (2010) 1838--1854. [https://] [doi.org/10.1016/j.biombioe.2010.07.018].

Total SA. La Mède: a facility for the energies of tomorrow. [https://www.total.com/energy-expertise/projects/] [bioenergies/la-mede-a-forward-looking-facility]. Accessed 5 July 2020.

Trippe, F., M. Fröhling, F. Schultmann, R. Stahl, E. Henrich, A. Dalai, Comprehensive techno-economic assessment of dimethyl ether (DME) synthesis and Fischer--Tropsch synthesis as alternative process steps within biomass-to- liquid production, Fuel Processing Technology 106 (2013) 577--586. [https://doi.org/10.1016/j.fuproc.2012.09.029].

Tura, H. A. (2018). Land rights and land grabbing in Oromia, Ethiopia. Land Use Policy, 70, 247-255.

Tyner, W.E. 2008. The US Ethanol and biofuels boom: its origins, current status and future prospects. BioScience 58(7):646-653. [https://doi.org/10.1641/ B580718].

U

Uduman, Nyomi, Ying Qi, Michael K. Danquah, Gareth M. Forde, and Andrew Hoadley. 2010. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. Journal of Renewable and Sustainable Energy 2 (1): 12701. doi: 10.1063/1.3294480.

UFOP. 2020. UFOP Global Supply Report 2019/2020.

UNICA. Números finais da safra 2014/2015 e iniciais da nova safra 2015/2016. União Da Indústria Cana-de-Açúcar; 2016. Accessed July 2020.

United Nations (2015). Transforming our world: The 2030 agenda for sustainable development. New York: United Nations, Department of Economic and Social Affairs.

United Nations Environment Programme. 2009. Towards sustainable production and use of resources: Assessing Biofuels, UNEP, Division of Technology Industry and Economics, Paris.

U. S. Congress (2007). Senate. 2007. Biofuels Security Act of

U. S. Environmental Protection Agency, Assessment and Standards Division, Office of Transportation and Air Quality. 2010. Renewable fuel standard program (RFS2) regulatory impact analysis. United States Environmental Protection Agency, Washington, DC. [https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1006DXP.TXT].

V

Van Stappen F., Brose I., Schenkel Y. 2011. Direct and indirect land use changes issues in European sustainability initiatives: State-of-the-art, open issues and future developments. Biomass and Bioenergy, 35, 12, [https://doi.] [org/10.1016/j.biombioe.2011.07.015]

Varis, O., Keskinen, M., & Kummu, M. (2017). Four dimensions of water security with a case of the indirect role of water in global food security. Water Security. [https://doi.org/10.1016/j.wasec.2017.06.002].

Vásquez, M.C., E.E. Silva, E.F. Castillo, Hydrotreatment of vegetable oils: A review of the technologies and its developments for jet biofuel production, Biomass and Bioenergy 105 (2017) 197--206.

Vieira, S., M.V. Barros, A.C.N. Sydney, C.M. Piekarski, A.C. de Francisco, L.P.d.S. Vandenberghe, E.B. Sydney, Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol, Bioresour. Technol. 299 (2020) 122635. [https://doi.org/10.1016/j.biortech.2019.122635].

Vitousek, P. M., Naylor, R., Crews, T., David, M. B., Drinkwater, L. E., Holland, E., ... & Nziguheba, G. (2009). Nutrient imbalances in agricultural development. Science, 324(5934), 1519-1520.

Vörösmarty, C. J. Global water resources: vulnerability from climate change and population growth. Science 289, 284--288 (2000).

de Vries, S.C., G.W.J. van de Ven, M.K. van Ittersum, K.E. Giller, Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques, Biomass and Bioenergy 34 (2010) 588--601. [https://doi.org/10.1016/j.biombioe.2010.01.001].

W

Walter, Arnaldo, Marcelo Valadares Galdos, Fabio Vale Scarpare, Manoel Regis Lima Verde Leal, Joaquim Eugênio Abel Seabra, Marcelo Pereira da Cunha, Michelle Cristina Araujo Picoli, and Camila Ortolan Fernandes de Oliveira. 2014. "Brazilian Sugarcane Ethanol: Developments so Far and Challenges for the Future: Brazilian Sugarcane Ethanol." Wiley Interdisciplinary Reviews: Energy and Environment 3 (1): 70--92. [https://doi.] [org/10.1002/wene.87].

Walter, A., Seabra, J.E.A., Machado, P.G., Correia, B. de B., Oliveira, C.O.F. (Eds.), 2018. Sustainability of Biomass, in: Biomass and Green Chemistry. Springer International Publishing, Cham, pp. 191--220. [https://doi.] [org/10.1007/978-3-319-66736-2]

Wang, Bei. 2010. Microalgae for biofuel production and CO2 sequestration. Hauppauge N.Y.: Nova Science Publishers.

Wang, Michael, May Wu, and Hong Huo. 2007. "Life-Cycle Energy and Greenhouse Gas Emission Impacts of Different Corn Ethanol Plant Types." Environmental Research Letters 2 (2): 024001. [https://doi.] [org/10.1088/1748-9326/2/2/024001].

WBA, 2019. Global Bioenergy Statistics 2019. World Bioenergy Association, Sweden.

West, P. C., Gerber, J. S., Engstrom, P. M., Mueller, N. D., Brauman, K. A., Carlson, K. M., Cassidy, E. S., Johnston, M., MacDonald, G. K., Ray, D. K., & Siebert, S. (2014). Leverage points for improving global food security and the environment. Science, 345(6194), 325--328. [https://doi.org/10.1126/science.1246067].

West, P. C., Gerber, J. S., Engstrom, P. M., Mueller, N. D., Brauman, K. A., Carlson, K. M., Cassidy, E. S., Johnston, M., MacDonald, G. K., Ray, D. K., & Siebert, S. (2014). Leverage points for improving global food security and the environment. Science, 345(6194), 325--328. [https://doi.org/10.1126/science.1246067].

Whittall, H. 2011. Proposal for an international ethical standard for biofuels. Biofuels 2(6): 607-609. [https://www.] [tandfonline.com/doi/abs/10.4155/bfs.11.112].

Wily, L. (2011b). The tragedy of public lands: The fate of the commons under global commercial pressure. Rome: The International Land Coalition.

Wolfe, M.L. and T.L. Richard. 2017. 21st century engineering for on-farm food-energy-water systems. Current Opinion in Chemical Engineering 18:69-76, [https://doi.org/10.1016/j.coche.2017.10.005].

Woods, J., Lynd, L.R., Laser, M., Batistella, M., Victoria, D. de C., Kline, K., Faaij, A., 2015. Land and Bioenergy, in: Bioenergy & Sustainability: Bridging the Gaps. Scientific Committee on Problems of the Environment (SCOPE), Paris Cedex, pp. 258--301.

Wu, M., Mintz, M., Wang, M., & Arora, S. (2009a). Consumptive Water Use in the Production of Ethanol and Petroleum Gasoline. ACS National Meeting Book of Abstracts, 1--77. www.anl.gov.

Wu, M., Mintz, M., Wang, M., & Arora, S. (2009b). Water consumption in the production of ethanol and petroleum gasoline. Environmental Management, 44(5), 981--997. [https://doi.org/10.1007/s00267-009-9370-0].

Wu, M., Chiu, Y., & Demissie, Y. (2012). Quantifying the regional water footprint of biofuel production by incorporating hydrologic modeling. Water Resources Research, 48(10). [https://doi.org/10.1029/2011WR011809]

Y

Yang, Y., Tilman, D., Lehman, C., Trost, J.J., 2018. Sustainable intensification of high-diversity biomass production for optimal biofuel benefits. Nat. Sustain. 1, 686--692. [https://doi.org/10.1038/s41893-018-0166-1]

Yanowitz, Janet, and Robert L. McCormick. 2009. Effect of biodiesel blends on North American heavy-duty diesel engine emissions. European Journal of Lipid Science and Technology 111 (8): 763--772. doi: 10.1002/ejlt.200800245

Yousuf, Abu. 2012. Biodiesel from lignocellulosic biomass--prospects and challenges. Waste management (New York, N.Y.) 32 (11): 2061--2067. doi: 10.1016/j.wasman.2012.03.008.

Z

Zhang, Z., L. Lohr, C. Escalante, M. Wetzstein. 2010. Food versus fuel: What do prices tell us? Energy Policy 38:445-451.

Zhou, X., M.J. Helmers, H. Asbjornsen, R.K. Kolka, M.D. Tolmer, R.M. Cruz. 2014. Nutrient removal by prairie filter strips in agricultural landscapes. J Soil Water Conserv 69:54-64, 10.2489/jswc.69.1.54.